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Abstract. The electronic structure of a fractal aggregate of carbon atoms in the sp2

hybridization is calculated by the Ḧuckel method. We have first constructed a fractal cluster
of carbon atoms which has a fractal dimensionD. To determine the electronic structure of
this cluster, we have used two methods: the direct diagonalization, and a method based on
the decomposition of the Ḧuckel matrix. We got finally the density of states (DOS) which has
properties of similarity for different sizes of the clusters.

1. Introduction

Fractal geometry has provided us with many new well defined structures which can be
used either to represent real objects or to investigate the properties of well known methods
in physics in a new context [1, 2]. We can find fractal structures of carbon in soot, but
generally these structures are mostly on the mesoscopic or even macroscopic scale, i.e. the
lower cut-off of the fractal domain in these structures is of the size of a particle of a few
ångstr̈oms [3, 4, 5, 6]. These structures are currently being studied on the basis of light
scattering properties.

The following study could allow us to detect in soot small molecules of carbon atoms
via the properties of their electronic structure.

The fractal morphology observed for the growth of clusters and aggregates is usually a
consequence of a non-equilibrium process in a system. Gaoet al [7] have shown that the
formation of thin films begins first with the formation of several fractal clusters, which at
the end of the process cover all of the plane.

Moreover, the properties of fractal carbon clusters are very useful as regards
understanding the chemical processes in the atmosphere and in the interstellar environment,
since carbon is the most frequently occurring element after hydrogen and helium.

The study of the electronic levels of fractal structures is of wide interest, and has been
under way for a few years. So far, the methods which have been used most frequently
are the renormalization group method [8, 9, 10, 11], and the iteration method within the
renormalization group method [9], which produce good results. Tremblayet al [12, 13] have
also studied the electronic density of sates of a fractal aggregate using the renormalization
group method with the Green functions corresponding to the electronic Hamiltonian. Here
we will present a very simple analysis of the problem based on the Hückel method. In
section 2, we give a brief summary of the Hückel method. In section 3, we present our
calculation method which is based essentially on the properties of matrices and determinants.
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Finally, in section 4, the numerical results are reported, and a discussion of them and of
our method is given.

2. The Hückel method

We will use a tight-binding Ḧuckel model modified in order to take hybridization into
account since carbon belongs to the IV-B group. It is derived from the Friedel–Lannoo
model [14] for the bulk, which has been made suitable for microclusters of pure IV-B
elements by Leleyter and Joyes [15]. Since the tight-binding approximation is a one-particle
theory, the Hamiltonian can be split into two parts: sp (orσ -) andπ -Hamiltonians. Theσ
andπ energy levels are calculated then by diagonalizing the corresponding operators, and
the total electronic energyE of the cluster is derived by filling the levels with the total
number of valence electrons (the origin of the energies is taken at the vacuum level). The
Hamiltonian of theσ -bonds is written as follows:

Hσ = Em

∑
i,J

|i, J 〉〈i, J | + 1σ

∑
i,J,J ′ 6=J

|i, J 〉〈i, J ′| + βσ

∑
i,i ′ 6=i,J

|i, J 〉〈i ′, J | (1)

whereEm is the average energy(Es + 2Ep)/3 (in the case of sp2 hybridization),βσ is the
usual hopping or resonance integral in Hückel theory, and1σ is a promotion integral (for
transfer between hybrid orbitals on the same site).Es andEp are the carbon atomic level
energies, and|i, J 〉 is the hybrid sp2 orbital which points from sitei along the bondJ .

On the other hand, the Hamiltonian of theπ -bonds reads

Hπ = Ep

∑
i

|i〉〈i| + βπ

∑
i,i ′ 6=i

|i〉〈i ′| (2)

where|i〉 is theπ -orbital centred on atomi, andβπ is the hopping integral forπ -levels.
So there are only three parameters:βσ , βπ , and1σ . The parametersβσ = −7.5 eV,

βπ = −3.01 eV, and1σ = −2.903 eV are obtained by fitting Ḧuckel calculation results
with data obtained fromab initio computations [16]. As the eigenstates in a fractal are
localized [17, 18], and can be considered as non-interacting, we have used them even for
large clusters. Furthermore, neither the repulsion between the nuclei nor the dielectronic
correlations are taken into account.

Now we are going to explain (section 3) how we can derive the energy levels from the
Hückel framework.

3. Method and model

We propose here a model of fractal clusters of carbon atoms. It would be interesting to
analyse the electronic structure of a carbon atom cluster in the sp2 hybridization because
this is a planar problem. This cluster may be a precursor during the constitution of graphite
planes, for example during the growing of thin films. So we have constructed a fractal
cluster of carbon atoms. The initial pattern is a cluster of four carbon atoms, one in the
centre and the three others connected to the first one. We have thus obtained an equilateral
triangle with one atom at its centre. In the second iteration, we put one of the initial
patterns at the centre and we attach three others around it, every second link—and so on.
The scheme of this construction is represented in figure 1. The mass fractal dimensionD

of this cluster can be calculated, as we know that in iterationn, the mass grows as 4n and
the linear dimension varies as 3n. So, the fractal dimension becomes

D = log 4

log 3
. (3)
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Figure 1. Representations of the cluster in three stages of iteration. (a) represents the monatomic
cluster (iterationn = 0), (b) represents the cluster composed of four atoms (iterationn = 1),
and finally (c) represents a cluster at iterationn = 2 with 42 atoms.

To determine the electronic energy levels of these fractal clusters in each iteration, we have
used the Ḧuckel method.

The Hückel matrix for theσ -levels for one atom of carbon is

( 0 1σ 1σ

1σ 0 1σ

1σ 1σ 0

)
(4)

i.e. for iterationn = 0. There is noπ -matrix for this iteration. Theπ -matrix for iteration
n = 1 is the following:

0 βs βs βs

βs 0 0 0
βs 0 0 0
βs 0 0 0

 . (5)

In the following, we will present our recursion method for theσ -levels; the method used
for the π -levels is the same, and the transposition is easy.

The Hückel matrix for theσ -levels which is obtained at iterationn for our fractal cluster
is represented in figure 2. The matrix can easily be factorized and expressed as the product
of two matricesBn andCn as shown in figure 2. For comparison, we have represented in
figure 3 the Ḧuckel matrix and its decomposition for a tridimensional Sierpinski web (see
[11]). In this case, the carbon atoms are in sp3 hybridization and there is noπ -matrix. One
can clearly see that the columns in the correspondingC-matrix are related to the connectivity
of the previous iteration patterns.
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Figure 2. The Hückel matrix for our fractal cluster representing either theπ -matrix or the
σ -matrix, decomposed into two matricesB and C. In the case ofσ -matrix, the squares have
dimension 3× 4n. In the case of matrixπ , the squares have dimension 4n. The columns of
matrix C have the same vertical dimension as the corresponding squares. Following each case,
β equalsβσ or βπ .

The advantage of this decomposition into two matrices is that the determinant of matrix
An is the product of the determinant of matrixBn and the determinant of matrixCn. The
determinant of matrixBn in iterationn is simply the determinant ofAn−1 in iterationn − 1
to the power 4: indeed, matrixBn is square diagonal, the squares being equal to those of
matrix An−1 in iterationn − 1. The determinant of matrixCn can be easily computed. We
remark that the Ḧuckel matrix is self-similar: the squares in the matrix in iterationn can
be replaced by the whole matrix itself but in iterationn − 1.

Det(Cn) reduces to a very simple form in every iteration:

Det(Cn) = (1 − F 2
n )(1 − E2

n)(1 − D2
n). (6)

The parametersDn, Fn, andEn are solutions of the square system of 3×4n equations with
An−1 as the first member and a column vector with zeros everywhere except one element
which is equal toβF (or βD or βE , correspondingly) as the second member. The non-linear
recursion relations for the electronic energy levels relating iterationn to iterationn − 1 are
then

Det(An) = (Det(An−1))
4(1 − F 2

n )(1 − E2
n)(1 − D2

n). (7)

To simplify this equation, we use the well-known method of taking the codeterminant
(coDet). So all of these parameters are similar to

Dn = coDet(βD)

Det(An−1)
(8)
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Figure 3. The Hückel matrix and its decomposition for the tridimensional Sierpinski web
composed of carbon atoms in the sp3 hybridization.

Figure 4. The density of states of the cluster in iterationn = 1.

whereβD is the numberβ corresponding to the calculation ofDn. Also, we can simplify
equation (7). coDet(βD) is a determinant of dimension 3× 4n−1. Finally, to obtain the
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Figure 5. The density of states of the cluster in iterationn = 2.

energy levels in iterationn, and after simplification, one has to solve( ∏
i=D,E,F

(Det(An−1) − coDet(βi))(Det(An−1) + coDet(βi))

)/
Det(An−1)

2 = 0. (9)

Equation (9) can be simplified in order to remove the numerator. Furthermore, equation (9)
removes degeneracy from the remaining roots, and this explains the splitting of the energy
levels between stagen − 1 and stagen.

Hence the excitation spectrum at stagen can be exactly computed if one knows the form
of the Hückel matrix in iterationn − 1. At each step, one has to solve for the determinant
of Cn which depends in fact on the determinant ofAn−1. Thus, taking account of the
determinant in the previous stepn − 1, one obtains the energy levels at the stagen.

We have computed the energy levels following two methods: direct diagonalization of
the Hückel matrix obtained as recalled in section 2, and the method which is described
in this section. The direct diagonalization has been performed by the Jacobi method. We
get exactly (within the numerical precision of our computer) the same results for the two
methods. In order to get the DOS, we have simply computed the numbers of each of the
energy levels and we have represented these numbers as a function of the energy levels.

4. Results and discussion

In figures 4, 5, and 6, we have represented the electronic DOS for iterationsn = 1,
n = 2, andn = 3. We can see that there is similarity among the three densities of states:
the densities of states are self-similar if we normalize them to the number of atoms at
each iteration stage. The property of self-similarity becomes more exact as the number of
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Figure 6. The density of states of the cluster in iterationn = 3.

iterations grows: for low numbers of iterations, there are finite-size effects.
For the electronic levels, one can see that the densities of states after different numbers

of iterations are very similar: the peaks atE = 0 eV andE = −2.903 eV remain in each
iteration. The peak atE = −2.903 eV is the value of1σ . The relative height of this peak
becomes larger as the iteration number grows. For the case whereE = −2.903 eV, the
peak arises from the existence of dangling bonds on ‘surface’ atoms [15]. But the peak at
0 eV can be explained by the fact that there is a pseudo-confinement effect.

Confinement effects are usually taken to indicate the presence of topologically
disconnected carbon clusters in the matrix. Electron eigenstates are mostly not extended
ones, being either localized or critical; this will cause a pseudo-confinement effect even
though the matrix is fully connected. This can explain the fact that we have a DOS which
is composed of several peaks instead of being continuous.

However, the matrixC removes degeneracy for almost all levels except the two
for which we obtain two large peaks. There is a process of subband splitting in each
iteration [19].

Finally, the method used here to find the electronic levels can be extended to all regular
fractal clusters composed of atoms in any hybridization. Indeed, there always exists a matrix
similar to matrixC which allows one to compute the electronic levels of the next iteration
in the construction of the cluster. The only parameter which changes with the geometry of
the (regular) fractal is the number ofβs in matricesC andA, regardless of their dimensions.

We have presented an ideal model for a fractal cluster of carbon atoms in the sp2

hybridization. At the structural level, one can say that such regular clusters do not exist—
the carbon atom clusters in nature are certainly less regular. Regular fractals are used as
models in physics. Furthermore, the surface sites would be more likely to be occupied
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by other atoms, such as hydrogen atoms. The modification of these clusters to statistical
fractal clusters of carbon atoms would transform this problem, which is exactly soluble, to
a problem which would only be computable by a numerical method.

We have emphasized that the method employed here can be applied to the computation
of the DOS of a regular fractal in any hybridization. This method would also be applicable
for the calculation of the spectral density of states. As a conclusion we can say that we
have developed in this paper a method which is very simple to use and which allows one to
go further in the determination of eigenvalues of one kind of matrix (self-similar matrices).
This method is complementary to the renormalization group methods: it allows one to
calculate the DOS for fractal clusters where finite-size effects occur and where scaling is
not exact. Hence, the properties of the DOS such as multifractality and corrections to
scaling may be studied in an analytical way.
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